429 research outputs found

    Optical sum in Nearly Antiferromagnetic Fermi Liquid Model

    Full text link
    We calculate the optical sum (OS) and the kinetic energy (KE) for a tight binding band in the Nearly Antiferromagnetic Fermi Liquid (NAFFL) model which has had some success in describing the electronic structure of the high TcT_c cuprates. The interactions among electrons due to the exchange of spin fluctuations profoundly change the probability of occupation (nk,σ)(n_{{\bf k},\sigma}) of states of momentum {\bf k} and spin σ\sigma which is the central quantity in the calculations of OS and KE. Normal and superconducting states are considered as a function of temperature. Both integrals are found to depend importantly on interactions and an independent electron model is inadequate.Comment: 9 Pages, 5 Figures Accepted for publication in Phys. Rev.

    Highly anisotropic energy gap in superconducting Ba(Fe0.9_{0.9}Co0.1_{0.1})2_{2}As2_{2} from optical conductivity measurements

    Full text link
    We have measured the complex dynamical conductivity, σ=σ1+iσ2\sigma = \sigma_{1} + i\sigma_{2}, of superconducting Ba(Fe0.9_{0.9}Co0.1_{0.1})2_{2}As2_{2} (Tc=22T_{c} = 22 K) at terahertz frequencies and temperatures 2 - 30 K. In the frequency dependence of σ1\sigma_{1} below TcT_{c}, we observe clear signatures of the superconducting energy gap opening. The temperature dependence of σ1\sigma_{1} demonstrates a pronounced coherence peak at frequencies below 15 cm−1^{-1} (1.8 meV). The temperature dependence of the penetration depth, calculated from σ2\sigma_{2}, shows power-law behavior at the lowest temperatures. Analysis of the conductivity data with a two-gap model, gives the smaller isotropic s-wave gap of ΔA=3\Delta_{A} = 3 meV, while the larger gap is highly anisotropic with possible nodes and its rms amplitude is Δ0=8\Delta_{0} = 8 meV. Overall, our results are consistent with a two-band superconductor with an s±s_{\pm} gap symmetry.Comment: 6 pages, 4 figures, discussion on pair-barking scattering and possible lifting of the nodes is adde

    Optical study of superconducting Ga-rich layers in silicon

    Full text link
    We performed phase-sensitive terahertz (0.12 - 1.2 THz) transmission measurements of Ga-enriched layers in silicon. Below the superconducting transition, T_{c} = 6.7 K, we find clear signatures of the formation of a superconducting condensate and of the opening of an energy gap in the optical spectra. The London penetration depth, \lambda(T), and the condensate density, n_{s} = \lambda^{2} 0)/\lambda^{2}(T), as functions of temperature demonstrate behavior, typical for conventional superconductors with \lambda(0) = 1.8 \mu m. The terahertz spectra can be well described within the framework of Eliashberg theory with strong electron-phonon coupling: the zero-temperature energy gap is 2\Delta(0) = 2.64 meV and 2\Delta(0)/k_{B}T_{c} = 4.6 \pm 0.1, consistent with the amorphous state of Ga. At temperatures just above T_{c}, the optical spectra demonstrate Drude behavior.Comment: 5 pages, 4 figure

    Bosonic spectral density of epitaxial thin-film La1.83Sr0.17CuO4 superconductors from infrared conductivity measurements

    Full text link
    We use optical spectroscopy to investigate the excitations responsible for the structure in the optical self-energy of thin epitaxial films of La1.83Sr0.17CuO4. Using Eliashberg formalism to invert the optical spectra we extract the electron-boson spectral function and find that at low temperature it has a two component structure closely matching the spin excitation spectrum recently measured by magnetic neutron scattering. We contrast the temperature evolution of the spectral density and the two-peak behavior in La2-xSrxCuO4 with another high temperature superconductor Bi2Sr2CaCu2O8+d. The bosonic spectral functions of the two materials account for the low Tc of LSCO as compared to Bi-2212

    Anomalous proximity effect in d-wave superconductors

    Full text link
    The anomalous proximity effect between a d-wave superconductor and a surface layer with small electronic mean free path is studied theoretically in the framework of the Eilenberger equations. The angular and spatial structure of the pair potential and the quasiclassical propagators in the interface region is calculated selfconsistently. The variation of the spatially-resolved quasiparticle density of states from the bulk to the surface is studied. It is shown that the isotropic gapless superconducting state is induced in the disordered layer.Comment: 6 pages, 5 postscript figures. Submitted to Phys.Rev.

    Bosons in high temperature superconductors: an experimental survey

    Full text link
    We review a number of experimental techniques that are beginning to reveal fine details of the bosonic spectrum \alpha^2F(\Omega) that dominates the interaction between the quasiparticles in high temperature superconductors. Angle-resolved photo emission (ARPES) shows kinks in electronic dispersion curves at characteristic energies that agree with similar structures in the optical conductivity and tunnelling spectra. Each technique has its advantages. ARPES is momentum resolved and offers independent measurements of the real and imaginary part of the contribution of the bosons to the self energy of the quasiparticles. The optical conductivity can be used on a larger variety of materials and with the use of maximum entropy techniques reveals rich details of the spectra including their evolution with temperature and doping. Scanning tunnelling spectroscopy offers spacial resolution on the unit cell level. We find that together the various spectroscopies, including recent Raman results, are pointing to a unified picture of a broad spectrum of bosonic excitations at high temperature which evolves, as the temperature is lowered into a peak in the 30 to 60 meV region and a featureless high frequency background in most of the materials studied. This behaviour is consistent with the spectrum of spin fluctuations as measured by magnetic neutron scattering. However, there is evidence for a phonon contribution to the bosonic spectrum as well.Comment: 71 pages, 52 figure

    Doping dependence of the many-body effects along the nodal direction in the high-Tc cuprate (Bi,Pb)_2Sr_2CaCu_2O_8

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) is used to study the doping dependence of the lifetime and the mass renormalization of the low energy excitations in the high-Tc cuprate (Bi,Pb)_2Sr_2CaCu_2O_8 along the zone diagonal. We find a linear energy de-pendence of the scattering rate for the underdoped samples and a quadratic energy depend-ence in the overdoped case. The mass enhancement of the quasiparticles due to the many body effects at the Fermi energy is found to be in the order of 2 and the renormalization extends over a large energy range for both the normal and the superconducting state. The much discussed kink in the dispersion around 70 meV is interpreted as a small additional effect at low temperatures.Comment: 12 pages, 3 figure

    Comments on the d-wave pairing mechanism for cuprate high TcT_c superconductors: Higher is different?

    Full text link
    The question of pairing glue for the cuprate superconductors (SC)is revisited and its determination through the angle resolved photo-emission spectroscopy (ARPES) is discussed in detail. There are two schools of thoughts about the pairing glue question: One argues that superconductivity in the cuprates emerges out of doping the spin singlet resonating valence bond (RVB) state. Since singlet pairs are already formed in the RVB state there is no need for additional boson glue to pair the electrons. The other instead suggests that the d-wave pairs are mediated by the collective bosons like the conventional low TcT_c SC with the alteration that the phonons are replaced by another kind of bosons ranging from the antiferromagnetic (AF) to loop current fluctuations. An approach to resolve this dispute is to determine the frequency and momentum dependences of the diagonal and off-diagonal self-energies directly from experiments like the McMillan-Rowell procedure for the conventional SC. In that a simple d-wave BCS theory describes superconducting properties of the cuprates well, the Eliashberg analysis of well designed high resolution experimental data will yield the crucial frequency and momentum dependences of the self-energies. This line of approach using ARPES are discussed in more detail in this review, and some remaining problems are commented.Comment: Invited review article published in the Journal of Korean Physical Society; several typos corrected and a few comments and references adde
    • …
    corecore